Yapay zeka teknolojilerinin hızla geliştiği günümüzde, işletmelerin veri tabanlı çözümlerle etkileşim kurma ve gelişen yapay zeka modellerinden en iyi şekilde yararlanma ihtiyacı iyice arttı. Bu bağlamda yapay zeka modelinin bağlamı doğru bir şekilde anlaması ve çıktılarını gerçek zamanlı ve bağlamsal olarak zenginleştirmesinin önemi her geçen gün daha da artıyor. 2024 yılında gerçek zamanlı veri analitiği, veri merkezli yapay zeka, yapay zeka destekli yardımcı pilotlar, multimodal büyük dil modelleri ve uç yapay zeka gibi önemli trendler ön plana çıkacak gibi gözüküyor. İşletmelerin yeni teknolojik inovasyonları benimsemesi, veri temelli çözümler aracılığıyla daha hızlı, doğru ve bağlamsal sonuçlara ulaşmalarına olanak tanıyacaktır. Aşağıda 2024 yılında öne çıkacağı düşünülen yapay zeka trendlerine bir göz atalım:
1. Alma Artırılmış Oluşturma (RAG) yapay zekadan yararlanırken temellendirilmiş, bağlamsal çıktılar alma adına çok büyük önem taşıyacaktır
- Büyük dil modelleri ve bu modellerin üretken yetenekleri etrafındaki beklenti, model halüsinasyonları gibi sorunlu bir olguyu da beraberinde getirmeye devam edecektir. Burada kastedilen, modellerin tutarlı olsa da olgusal gerçeklikten veya girdinin bağlamından kopuk olabilecek çıktılar ürettiği durumları ifade etmektedir.
- Modern işletmeler geliştikçe, yapay zeka halüsinasyonlarının gizemini çözmek ve gerçek zamanlı bağlamsal verilerle birleştirildiğinde bu halüsinasyonları azaltabilen, modelin doğruluğunu ve dolayısıyla değerini artırabilen (RAG) tekniğini uygulamak büyük önem kazanacaktır. RAG, halüsinasyonları azaltarak doğruluğu artıracaktır.
2. Gerçek zamanlı veriler, işletmelerin yapay zeka ile gerçekleştirdikleri üretken deneyimlerin güçlendirmesi adına standart haline gelecektir; Veri katmanları hem transaksoniyel hem de gerçek zamanlı analitiği desteklemelidir
- Üretken yapay zekanın 2023 yılındaki yüksek hızda büyümesi 2024’te de güçlü bir şekilde devam edecek. Daha fazla işletme, gerçek zamanlı veri uygulamalarını güçlendirmek ve dinamik ve uyarlanabilir yapay zeka destekli çözümler oluşturmak için operasyonlarına üretken yapay zekayı entegre etme yoluna gidecek. Yapay zekanın iş açısından önemi arttıkça kuruluşların mümkün olduğunca yeni verilerden yararlanarak yapay zeka modellerinin temelini oluşturan verilerin gerçeğe dayandığından emin olmaları gerekir.
- Tıpkı gıda, hediye kartları ve ilaçlarda olduğu gibi verilerin de bir son kullanma tarihi vardır. Üretken yapay zekanın, gerçekten etkili, doğru ve bağlama uygun sonuçlar sağlaması için gerçek zamanlı, sürekli güncellenen veriler üzerine inşa edilmesi elzemdir. Gerçek zamanlı içgörülere yönelik artan talep, gerçek zamanlı veri işleme ve analitik sağlayan teknolojilerin benimsenmesini artıracaktır. 2024 ve sonrasında işletmeler, zamanında kararlar almak ve pazar dinamiklerine anında yanıt vermek için hem işlemsel hem de gerçek zamanlı analitiği destekleyen bir veri katmanından giderek daha fazla yararlanmaya başlayacaktır.
3. Model tabanlı yapay zekadan veri merkezli yapay zekaya doğru bir paradigma değişimi gerçekleşecek
- Veri, günümüz makine öğreniminde çok büyük bir öneme sahip olmakla birlikte yapay zeka projelerinde doğru şekilde ele alınması ve işlenmesi gerekir. Günümüz yapay zekası model tabanlı bir yaklaşım benimsediğinden, düşük kaliteli veriler üzerine inşa edilen bir modelin yapılabilmesi için yüzlerce saat boşa harcanmaktadır.
- Yapay zeka modelleri olgunlaştıkça, geliştikçe ve sayıları arttıkça, odak noktası artık modelleri verilere yaklaştırmak yerine tam tersini yapmaya kayacaktır. Veri merkezli yapay zeka, kuruluşların en yeni verilere dayanan hem üretken hem de tahmine dayalı deneyimler sunmasını sağlayacaktır. Bu, hem halüsinasyonları azaltacak hem de modellerin çıktılarını önemli ölçüde iyileştirecektir.
4. İşletmeler daha hızlı içgörü elde etmek için yapay zeka destekli yardımcı pilotlardan yararlanacak
- Yapay zeka ve makine öğreniminin veri yönetimi süreçlerine ve analitik araçlarına entegrasyonu daha da gelişim göstermeye devam edecektir. Üretken yapay zeka teknolojisi geliştikçe, işletmelerin yapay zeka ve ürettiği verilerle bağlamsal bir düzeyde etkileşim kurmaya ihtiyaç duyacaktır. Artırılmış veri ve analitikten yararlanan işletmeler, daha hızlı içgörü elde etmek için ürünlerine yapay zeka destekli yardımcı pilotlar eklemeye başlayacaktır. Büyük miktarda veriyi anlama ve işleme yeteneğine sahip olan yardımcı robotlar, verileri sıralamak, en iyi uygulamaları ve önerileri oluşturmak için yapay zeka modellerine yardımcı olacaklardır.
- Veri artırımı, önümüzdeki yıllarda işletmelerin altyapı ve uygulama inşasını değiştirecek çok güçlü bir araçtır. Veri artırımı yönetimi, rutin veri kalitesi ve veri entegrasyonu görevlerini otomatikleştiricek ve dolayısıyla gelişmiş içgörüler oluşmasına ve veriye dayalı karar verme sürecine katkı sağlayacaktır.
5. Multimodal büyük dil modelleri (LLM) ve veritabanları, yapay zeka uygulamalarının sektörler genelinde yayılmasını mümkün hale getirecek
- 2024’ün en heyecan verici trendlerinden biri multimodal LLM’lerin yükselişi olacak. Bu gelişmeyle birlikte, farklı veri türlerini depolayabilen, yönetebilen ve etkin sorgulamaya olanak tanıyan multimodal veritabanlarına duyulan ihtiyaç artmaya devam edecek. Fakat multimodal veri kümelerinin boyutu ve karmaşıklığı, genellikle metin veya görseller gibi tek bir veri türünü depolamak ve sorgulamak için tasarlanmış olan geleneksel veri tabanları için bir zorluk teşkil edecek gibi gözüküyor.
- Öte yandan, multimodal veritabanları daha çok yönlü ve güçlüdür. Metin, görüntü, ses ve video gibi birden fazla modalite kullanarak, bilgiyi işleme ve anlamanın evriminde bir ilerlemeyi temsil etmekteler. Sağlık, robotik, e-ticaret, eğitim, perakende ve video oyunları da dahil olmak üzere multimodal yaklaşımdan doğrudan yararlanabilecek sektörler olacak. Multimodal veritabanları, 2024 yılı ve sonrasında önemli bir büyüme kaydedecek ve bu veritabanlarına yapılan yatırımlar artacaktır. Böylece işletmeler yapay zeka destekli uygulamaları yönlendirmeye devam edebileceklerdir.
6. Uç yapay zekası gerçek zamanlı çıkarımlara ve gelişmiş model optimizasyonlarına güç verecek
- Yapay zeka ve uç bilişimin birlikte kullanılmaya başlanması süreci olgunlaşmaya devam edecek ve uç ortamlarında daha güçlü gerçek zamanlı analitik ve karar vermeye imkan tanıyacaktır. Gelişmiş uç yapay zeka yetenekleri, buluttaki merkezi konumlara veri aktarımı ihtiyacını azaltarak daha hızlı yanıtlama ve daha iyi gizlilik koruması sağlayacaktır.
- Uygulamaya ve veriye daha yakın olan uç yapay zekası ve çıkarım yapmanın faydaları ortaya çıktıkça, kuruluşlar verileri yerel olarak işlemek için çeşitli uç yığınları ve veritabanları üzerinde düşünmeye başlayacaktır. Bu dağıtılmış çıkarım, modellerin yerel veri örneklerini tutan birden fazla cihaz veya sunucuda bunları değiştirmeye gerek kalmadan, veri gizliliği ve uyumluluk endişelerini ele almadan eğitilmesine olanak tanıyacaktır. Bu da uç yapay zekası ile birlikte yerel cihazlarda veri işlemeyi verimli bir hale getirecek, gecikmeyi azaltacak ve veri gizliliğini sağlayacaktır.
Rahul Pradhan, Ürün ve Strateji Başkan Yardımcısı, Couchbase